Pages

Senin, 09 Februari 2015

MANFAAT ILMU KIMIA


MENGAPA PAKAIAN LEMBAB LEBIH MUDAH DISETRIKA

            Semua kain (dalam bahasa Kimia biasanya polimer) mempunyai struktur yang sama. Analogi yang baik untuk strukturnya adalah semangkok mie yang telah dimasak dengan tiap untai mie mewakili molekul polimer plastik. Molekul-molekul polimer dalam plastik seperti untai-untai mie saling berbelit. Pada suhu rendah untai-untai molekul itu mengeras dan plastik nampak padat dan rapuh, seperti gelas (barangkali mirip mie yang belum direbus).
Dengan pemanasan, molekul-molekul yang seperti mie dalam plastik tadi mulai meliuk-liuk, dan tergelincir satu sama lain dan akhirnya pada suhu cukup tinggi bergerak dan mengalir serentak. Jadi tidak seperti bahan bukan plastik yang tegas suhu perubahan padat ke cairnya (misalnya es tepat pada suhu 0oC, secara tegas meleleh dari padat ke cair), plastik berubah perlahan dari padatan ke cairan.
Kalau pada bahan non-plastik kita kenal titik leleh (suhu saat perubahan padat menjadi cair), pada bahan plastik dikenal suhu transisi gelas (biasa diberi simbol Tg). Tg adalah suhu saat peningkatan kemudahan-alir plastik mulai terjadi. Nilai Tg bergantung jenis plastiknya dan dapat diturunkan nilainya dengan bahan yang disebut plastisiser.
Contoh nyata dari apa yang kita diskusikan di atas adalah:
ketika kita harus membersihkan sisa permen karet di karpet. Kita telah merasakan sukarnya mengambil sisa permen karet dari karpet tersebut, karena permen tersebut melekat erat dengan karpet. Tapi bila kita dinginkan sisa permen itu dengan es agar berada di bawah Tg-nya, sisa permen tersebut akan pecah seperti padatan biasa.
Kapas adalah polimer alam (berupa selulosa) dengan Tg = 225 oC. Air dapat berfungsi sebagai plastisiser kapas, sehingga dapat menurunkan Tg. Jadi dengan menyemprotkan sedikit air, kerutan pada kain yang terbuat dari kapas lebih mudah dihilangkan. Setelah dingin bentuk kain yang telah hilang kerutnya akan tetap.
Dengan pelan tapi pasti kain katun akan menyerap air dari udara dan kembali ke keadaan lebih plastik dan dengan mudah kusut lagi. Dengan mencampurkan sedikit polimer lain poliester ke poli selulosa, menjadikan daya serap air kain berkurang.
Nilon dan poliester memiliki Tg yang lebih rendah, akibatnya seterika yang digunakan pun tidak perlu terlalu panas.
Nah, ternyata menyetrika akan menjadi logis dengan kimia.

Keramik memiliki karakteristik yang memungkinkannya digunakan untuk berbagai aplikasi termasuk :
kapasitas panas yang baik dan konduktivitas panas yang rendah.
Tahan korosi
Sifat listriknya dapat insulator, semikonduktor, konduktor bahkan superkonduktor
Sifatnya dapat magnetik dan non-magnetik
Keras dan kuat, namun rapuh.
Dua jenis ikatan dapat terjadi dalam keramik, yakni ikatan ionik dan kovalen. Sifat keseluruhan material bergantung pada ikatan yang dominan. Klasifikasi
Bahan keramik dapat dibedakan menjadi dua kelas : kristalin dan amorf (non kristalin). Dalam material kristalin terdapat keteraturan jarak dekat maupun jarak jauh, sedang dalam material amorf mungkin keteraturan jarak pendeknya ada, namun pada jarak jauh keteraturannya tidak ada. Beberapa keramik dapat berada dalam kedua bentuk tersebut, misalnya SiO2, (lihat gambar, a struktur yang kristalin, b amorf).
Jenis ikatan yang dominan (ionik atau kovalen) dan struktur internal (kristalin atau amorf) mempengaruhi sifat-sifat bahan keramik. Sifat termal
Sifat termal penting bahan keramik adalah kapasitas panas, koefisien ekspansi termal, dan konduktivitas termal. Kapasitas panas bahan adalah kemampuan bahan untuk mengabsorbsi panas dari lingkungan. Panas yang diserap disimpan oleh padatan antara lain dalam bentuk vibrasi (getaran) atom/ion penyusun padatan tersebut.
Keramik biasanya memiliki ikatan yang kuat dan atom-atom yang ringan. Jadi getaran-getaran atom-atomnya akan berfrekuensi tinggi dan karena ikatannya kuat maka getaran yang besar tidak akan menimbulkan gangguan yang terlalu banyak pada kisi kristalnya.
Hantaran panas dalam padatan melibatkan transfer energi antar atom-atom yang bervibrasi. Vibrasi atom akan mempengaruhi gerakan atom-atom lain di tetangganya dan hasilnya adalah gelombang yang bergerak dengan kecepatan cahaya yakni fonon. Fonon bergerak dalam bahan sampai terhambur baik oleh interaksi fonon-fonon maupun cacat kristal. Keramik amorf yang mengandung banyak cacat kristal menyebabkan fonon selalu terhambur sehingga keramik merupakan konduktor panas yang buruk. Mekanisme hantaran panas oleh elektron, yang dominan pada logam, tidak dominan di keramik karena elektron di keramik sebagian besar terlokalisasi.
Contoh paling baik penggunaan keramik untuk insulasi panas adalah pada pesawat ruang angkasa. Hampir semua permukaan pesawat tersebut dibungkus keramik yang terbuat dari serat silika amorf. Titik leleh aluminium adalah 660 oC. Ubin menjaga suhu tabung pesawat yang terbuat dari Al pada atau dibawah 175 oC, walaupun eksterior pesawat mencapau 1400 oC. Sifat Optik
Bila cahaya mengenai suatu obyek cahaya dapat ditransmisikan, diabsorbsi, atau dipantulkan. Bahan bervariasi dalam kemampuan untuk mentransmisikan cahaya, dan biasanya dideskripsikan sebagai transparan, translusen, atau opaque. Material yang transparan, seperti gelas, mentransmisikan cahaya dengan difus, seperti gelas terfrosted, disebut bahan translusen. Batuan yang opaque tidak mentransmisikan cahaya.
Dua mekanisme penting interaksi cahaya dengan partikel dalam padatan adalah polarisasi elektronik dan transisi elektron antar tingkat energi. Polarisasi adalah distorsi awan elektron atom oleh medan listrik dari cahaya. Sebagai akibat polarisasi, sebagian energi dikonversikan menjadi deformasi elastik (fonon), dan selanjutnya panas.
Seperti dalam atom elektron-elektron dalam bahan berada dalam tingkat-tingkat energi tertentu. Absorbsi energi menghasilkan perpindahan elektron dari tingkat dasar ke tingkat tereksitasi. Ketika elektron kembali ke keadaan dasar disertai dengan pemancaran radiasi elektromagnetik.
Dalam padatan elektron yang energinya tertinggi ada dalam orbital-orbital dalam pita valensi dan orbital-orbital yang tidak terisi biasanya dalam pita konduksi. Gap antara pita valensi dan pita konduksi disebut gap energi.
Range energi cahaya tampak 1,8 sampai 3,1 eV. Bahan dengan gap energi di daerah ini akan mengabsorbsi energi yang berhubungan. Bahan itu akan tampak transparan dan berwarna. Contohnya, gap energi CdS sekitar 2,4 eV dan mengabsorbsi komponen cahaya biru dan violet dari sinar tampak. Tampak bahan tersebut berwarna kuning-oranye.
Bahan dengan gap energi kurang dari 1,8 eV akan opaque, sebab semua cahaya tampak akan diabsorbsi. Material dengan gap energi lebih besar 3,1 eV tidak akan menyerap range sinar tampak dan akan tampak transparan dan tak berwarna. Cahaya yang diemisikan dari transisi elektron dalam padatan disebut luminesensi. Bila terjadi dalam selang waktu yang pendek disebut flouresensi, bila didalam selang waktu yang lebih panjang disebut fosforisensi.
Cahaya yang ditransmisikan dari satu medium ke medium lain, misalnya dari gelas ke air akan mengalami pembiasan. Pembelokan cahaya ini adalah akibat perubahan kecepatan rambat yang asal mulanya dari polarisasi elektronik. Karena polarisasi meningkat dengan naiknya ukuran atom. Gelas yang mengandung ion-ion berat (seperti kristal timbal) memiliki indeks bias yang lebih besar dari gelas yang mengandung atom-atom ringan (seperti gelas soda).
Hamburan cahaya internal dalam bahan yang sebenarnya transparan mungkin dapat mengakibatkan bahan menjadi translusen atau opaque. Hamburan semacam ini terjadi antara lain di batas butiran, batas fasa, dan pori-pori.
Banyak aplikasi memanfaatkan sifat optik bahan keramik ini. Transparansi gelas membuatnya bermanfaat untuk jendela, lensa, filter, alat masak, alat lab, dan objek-objek seni. Pengubahan antara cahaya dan listrik adalah dasar penggunaan bahan semikonduktor seperti GaAs dalam laser dan meluasnya penggunaan LED dalam alat-alat elektronik. Keramik fluoresensi dan fosforisensi digunakan dalam lampu-lampu listrik dan layar-layar tv. Akhirnya serat optik mentransmisikan percakapan telepon dan data komputer yang didasarkan atas refleksi internal total sinyal cahaya.

SIFAK MEKANIK
Keramik biasanya material yang kuat, dan keras dan juga tahan korosi. Sifat-sifat ini bersama dengan kerapatan yang rendah dan juga titik lelehnya yang tinggi, membuat keramik merupakan material struktural yang menarik.
Aplikasi struktural keramik maju termasuk komponen untuk mesin mobil dan struktur pesawat. Misalnya, TiC mempunyai kekerasan 4 kali kekerasan baja. Jadi, kawat baja dalam struktur pesawat dapat diganti dengan kawat TiC yang mampu menahan beban yang sama hanya dengan diameter separuhnya dan 31 persen berat. Semen dan tanah liat adalah contoh yang lain, keduanya dapat dibentuk ketika basah namun ketika kering akan menghasilkan objek yang lebih keras dan lebih kuat. Material yang sangat kuat seperti alumina (Al2O3) dan silikon karbida (SiC) digunakan sebagai abrasif untuk grinding dan polishing.
Keterbatasan utama keramik adalah kerapuhannya, yakni kecenderungan untuk patah tiba-tiba dengan deformasi plastik yang sedikit. Ini merupakan masalah khusus bila bahan ini digunakan untuk aplikasi struktural. Dalam logam, elektron-elektron yang terdelokalisasi memungkinkan atom-atomnya berubah-ubah tetangganya tanpa semua ikatan dalam strukturnya putus. Hal inilah yang memungkinkan logam terdeformasi di bawah pengaruh tekanan. Tapi, dalam keramik, karena kombinasi ikatan ion dan kovalen, partikel-partikelnya tidak mudah bergeser. Keramiknya dengan mudah putus bila gaya yang terlalu besar diterapkan.
Faktur rapuh terjadi bila pembentukan dan propagasi keretakan yang cepat. Dalam padatan kristalin, retakan tumbuh melalui butiran (trans granular) dan sepanjang bidang cleavage (keretakan) dalam kristalnya. Permukaan tempat putus yang dihasilkan mungkin memiliki tekstur yang penuh butiran atau kasar. Material yang amorf tidak memiliki butiran dan bidang kristal yang teratur, sehingga permukaan putus kemungkinan besar mulus penampakannya.
Kekuatan tekan penting untuk keramik yang digunakan untuk struktur seperti bangunan. Kekuatan tekan keramik biasanya lebih besar dari kekuatan tariknya. Untuk memperbaiki sifat ini biasanya keramik di-pretekan dalam keadaan tertekan. Sifat Hantaran Listrik.
Sifat listrik bahan keramik sangat bervariasi. Keramik dikenal sangat baik sebagai isolator. Beberapa isolator keramik (seperti BaTiO3) dapat dipolarisasi dan digunakan sebagai kapasitor.
Keramik lain menghantarkan elektron bila energi ambangnya dicapai, dan oleh karena itu disebut semikonduktor. Tahun 1986, keramik jenis baru, yakni superkonduktor temperatur kritis tinggi ditemukan. Bahan jenis ini di bawah suhu kritisnya memiliki hambatan = 0.
Akhirnya, keramik yang disebut sebagai piezoelektrik dapat menghasilkan respons listrik akibat tekanan mekanik atau sebaliknya.
Sering pula digunakan bahan yang disebut dielektrik. Bahan ini adalah isolator yang dapat dipolarisasi pada tingkat molekular. Material semacam ini digunakan untuk menyimpan muatan listrik.
Kekuatan dielektrik bahan adalah kemampuan bahan tersebut untuk menyimpan elektron pada tegangan tinggi. Bila kapasitor dalam keadaan bermuatan penuh, hampir tidak ada arus yang lewat. Namun dengan tegangan tinggi dapat mengeksitasi elektron dari pita valensi ke pita konduksi. Bila hal ini terjadi arus mengalir dalam kapasitor, dan mungkin disertai dengan kerusakan material karena meleleh, terbakar atau menguap. Medan listrik yang diperlukan untuk menghasilkan kerusakan itu disebut kekuatan dielektrik. Beberapa keramik mempunyai kekuatan dielektrik yang sangat besar.Porselain misalnya sampai 160 kV/cm. Sebagian besar hantaran listrik dalam padatan dilakukan oleh elektron. Di logam, elektron penghantar dihamburkan oleh vibrasi termal meningkat dengan kenaikan suhu, maka hambatan logam meningkat pula dengan kenaikan suhu.
Sebaliknya, elektron valensi dalam keramik tidak berada di pita konduksi, sehingga sebagian besar keramik adalah isolator. Namun, konduktivitas keramik dapat ditingkatkan dengan memberikan ketakmurnian. Energi termal juga akan mempromosikan elektron ke pita konduksi, sehingga dalam keramik, konduktivitas meningkat (hambatan menurun) dengan kenaikan suhu.
Beberapa keramik memiliki sifat piezoelektrik, atau kelistrikan tekan. Sifat ini merupakan bagian bahan "canggih" yang sering digunakan sebagai sensor. Dalam bahan piezoelektrik, penerapan gaya atau tekanan dipermukaannya akan menginduksi polarisasi dan akan terjadi medan listrik, jadi bahan tersebut mengubah tekanan mekanis menjadi tegangan listrik.
Bahan piezoelektrik digunakan untuk tranduser, yang ditemui pada mikrofon, dan sebagainya.
Dalam bahan keramik, muatan listrik dapat juga dihantarkan oleh ion-ion. Sifat ini dapat diubah-ubah dengan merubah komposisi, dan merupakan dasar banyak aplikasi komersial, dari sensor zat kimia sampai generator daya listrik skala besar. Salah satu teknologi yang paling prominen adalah sel bahan bakar. Kemampuan penghantaran ion didasarkan kemampuan keramik tertentu untuk memungkinkan anion oksigen bergerak, sementara pada waktu yang sama tetap berupa isolator. Zirkonia, ZrO2, yang distabilkan dengan kalsia (CaO), adalah contoh padatan ionik.







Zat-zat Kimia Beracun Yang Sering Dimakan Manusia

Sering tidak kita sadari bahwa dalam makanan yang kita konsumsi sehari-hari ternyata mengandung zat-zat kimia yang bersifat racun, baik itu sebagai pewarna, penyedap rasa dan dan bahan campuran lain. Za-zat kimia ini berpengaruh terhadap tubuh kita dalam level sel, sehingga kebanyakan kita akan mengetahui dampaknya dalam waktu yang lama

Dampak negatif yang bisa terjadi adalah dapat memicu kanker, kelainan genetik, cacat bawaan ketika lahir, dan lain-lain.
Tidak ada cara untuk menghindar 100% dari bahan-bahan kimia itu dalam kehidupan kita sehari-hari, yang perlu kita lakukan adalah meminimalkan penggunaannya sehingga tidak melewati ambang batas yang disarankan. Karena selain banyak tersedia di pasaran, bahan-bahan tersebut juga harganya yang relatif sangat murah.

Berikut adalah contoh bahan-bahan yang bersifat racun yang sering kita jumpai dalam kehidupan sehari-hari :


1. Sakarin (Saccharin)
Sakarin adalah bubuk kristal putih, tidak berbau dan sangat manis, kira-kira 550 kali lebih manis dari pada gula biasa. Oleh karena itu ia sangat populer dipakai sebagai bahan pengganti gula.

Tikus-tikus percobaan yang diberi makan 5% sakarin selama lebih dari 2 tahun, menunjukkan kanker mukosa kandung kemih (dosisnya kira-kira setara 175 gram sakarin sehari untuk orang dewasa seumur hidup).

Sekalipun hasil penelitian ini masih kontroversial, namun kebanyakan para epidemiolog dan peneliti berpendapat, sakarin memang meningkatkan derajat kejadian kanker kandung kemih pada manusia kira-kira 60% lebih tinggi pada para pemakai, khususnya pada kaum laki-laki.

Food and Drug Administation (FDA) Amerika menganjurkan untuk membatasi penggunaan sakarin hanya bagi para penderita kencing manis dan obesitas. Dosisnya agar tidak melampaui 1 gram setiap harinya.'


2. Siklamat (Cyclamate)
Siklamat adalah bubuk kristal putih, tidak berbau dan kira-kira 30 kali lebih mains dari pada gula tebu (dengan kadar siklamat kira-kira 0,17%). Bilamana kadar larutan dinaikkan sampai dengan 0,5%, maka akan terasa getir dan pahit.
Siklamat dengan kadar 200 mg per ml dalam medium biakan sel leukosit dan monolayer manusia (in vitro) dapat mengakibatkan kromosom sel-sel tersebut pecah. Tetapi hewan percobaan yang diberi sikiamat dalam jangka lama tidak menunjukkan pertumbuhan ganda.

Di Inggris penggunaan siklamat untuk makanan dan minuman sudah dilarang, demikian pula di beberapa negara Eropa dan Amerika Serikat

3. Nitrosamin
Sodium nitrit adalah bahan kristal yang tak berwama atau sedikit semu kuning. Ia dapat berbentuk sebagai bubuk, butir-butir atau bongkahan dan tidak berbau. Garam ini sangat digemari, antara lain untuk mempertahankan warna asli daging serta memberikan aroma yang khas seperti sosis, keju, kornet, dendeng, ham, dan lain-lain.
Untuk pembuatan keju dianjurkan supaya kandungan sodium nitrit tidak melampaui 50 ppm, sedangkan untuk bahan pengawet daging dan pemberi aroma yang khas bervariasi antara 150 – 500 ppm.

Sodium nitrit adalah precursor dari nitrosamines, dan nitrosammes sudah dibuktikan bersifat karsinogenik pada berbagai jenis hewan percobaan. Oleh karena itu, pemakaian sodium nitrit harus hati-hati dan tidak boleh melampaui 500 ppm.
Makanan bayi sama sekali dilarang mengandung sodium nitrit.
4. Zat Pewarna Sintetis
Dari hasil pengamatan di pasar-pasar ditemukan 5 zat pewarna sintetis yang paling banyak digemari di Indonesia adalah warna merah, kuning, jingga, hijau dan coklat.

Dua dari lima zat pewarna tersebut, yaitu merah dan kuning adalah Rhodamine-B dan metanil yellow. Kedua zat pewarna ini termasuk golongan zat pewarna industri untuk mewarnai kertas, tekstil, cat, kulit dsb. dan bukan untuk makanan dan minuman. Hasil penelitian menunjukkan bahwa pemberian kedua zat warna tersebut kepada tikus dan mencit mengakibatkan limfoma.

Selain itu, boraks, juga merupakan zat pewarna favorit yang sering digunakan oleh produsen makanan.


5. Monosodium Glutamat (MSG) 
Monosodium glutamat (MSG) atau vetsin adalah penyedap masakan dan sangat populer di kalangan para ibu rumahtangga, warung nasi dan rumah makan. Hampir setiap jenis makanan masa kini dari mulai camilan untuk anak-anak seperti chiki dan sejenisnya, mie bakso, masakan cina sampai makanan tradisional sayur asam, lodeh dan bahkan sebagian masakan padang sudah dibubuhi MSG atau vetsin.
Pada hewaan percobaan, MSG dapat menyebabkan degenerasi dan nekrosi sel-sel neuron, degenerasi dan nekrosis sel-sel syaraf lapisan dalam retina, menyebabkan mutasi sel, mengakibatkan kanker kolon dan hati, kanker ginjal, kanker otak dan merusak jaringan lemak.


Bahaya di Masa Mendatang
Dari beberapa contoh bahan kimia beracun yang sehari-hari dipergunakan sebagai zat tambahan dalam makanan dan dipakai secara meluas di kalangan masyarakat, maka bahaya dalam jangka panjang sudah dapat perkirakan. Untuk mencegah hal ini, pemerintah harus sudah berani melakukan tindakan preventif mulai sekarang dan jangan menunggu-nunggu kalau sudah ada korban.

Hal lain yang perlu diingatkan, cara pemakaian MSG atau vetsin yang sudah sangat meluas dan berlebihan pada saat ini perlu mendapat perhatian khusus, karena MSG sangat mutagenik dan karsinogenik, khusus terhadap hati, kolon, ginjal, otak dan lain-lain.

Korosi








Korosi adalah peristiwa perusakan logam akibat terjadinya reaksi kimia dengan lingkungan yang menghasilkan produk yang tidak diinginkan. Lingkungan dapat berupa asam, basa, oksigen dari udara, oksigen didalam air atau zat kimia lain. Perkaratan besi adalah peristiwa elektrokimia sebagai berikut :
-   Besi dioksidasi oleh H2O atau ion hydrogen
Fe(s) → Fe2+(aq) + 2e- (oksidasi)
2H+ (aq) → 2H(aq) ( reduksi )
-   Atom-atom H bergabung menghasilkan H2
2H(aq) → H2(g)
-   Atom-atom H bergabung dengan oksigen
2H(aq) + ½ O2(aq) → H2 O(l)
-   Jika konsentrasi H+ cukup tinggi (pH rendah), maka reaksi
Fe + 2H+ (aq) → 2H(aq) + Fe2+ (aq)
2H(aq) → H2(g)
-   Ion Fe2+ juga bereaksi dengan oksigen dan membentuk karat (coklat keerah-merahan ) dengan menghasilkan ion H+ yang selanjutnya direduksi menjadi H2-
4Fe2+ (aq) + O2(aq) + 4H2 O(l) + 2xH2 O(l) → 2Fe2O3H2O)x(s) + 8H+
Reaksi totalnya menjadi
4Fe(s) + 3O2(aq) + 2x H2 O(l) → 2Fe2O3H2O)x(s)
Korosi dapat dihambat dengan beberapa cara, misalnya :
Pemakaian logam alloy dengan cara
Pembentukan lapisan pelindung
Menaikkan tegangan elektrode
2.  Pemakaian lapisan pelindung dengan cara:
Pengecatan
Pelapisan senyawa organik (pelumas)
Pelapisan dengan gelas
Pelapisan dengan logam
Dilapisi logam yang lebih mulia
Dilapisi logam yang lebih mudah teroksidasi
Menanam batang-batang logam yang lebih aktif dekat logam besi dan dihubungkan
Dicampur dengan logam lain
3.  Elektrokimiawi dengan cara eliminasi perbedaan tegangan:
Menaikkan kemurnian logam
Mencegah kontak 2 logam
Memakai inhibitor
Isolasi logam dari larutan, dan lain-lain.
Faktor yang berpengaruh terhadap korosi
Kelembaban udara
Elektrolit
Zat terlarut pembentuk asam (CO2, SO2)
Adanya O2
Lapisan pada permukaan logam
Letak logam dalam deret potensial reduksi

KESIMPULAN
Elektrolisis. pada sel elektrolisis, aliran listrik menyebabkan reduksi pada muatan negatif di katoda dan oksidasi pada muatan positif di anoda. Aplikasi elektrolisis. Elektroplatting, produksi Aluminium dan Magnesium, pemurnian tembaga, dan elektrolisis dari pelelehan NaCl.
Korosi logam adalah salah satu masalah yang paling penting yang dihadapi oleh kelompok industri maju. pengaruh korosi dapat terlihat (pembentukan karat pada permukaan besi) dan tidak terlihat (keretakan serta terjadinya pengurangan kekuatan logam di bawah permukaan)

Design by Rosmini Erdati S.Pd


Comments
0 Comments

0 komentar:

Posting Komentar